If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-14k+27=0
a = 1; b = -14; c = +27;
Δ = b2-4ac
Δ = -142-4·1·27
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{22}}{2*1}=\frac{14-2\sqrt{22}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{22}}{2*1}=\frac{14+2\sqrt{22}}{2} $
| -80=-4x+40 | | -7u-39=-2(u+2 | | 75(x+800)=-300(200x-500) | | 4.1=13.7-6u | | 8v+24=4(v+3) | | 4.1=13.7-6x | | 10x+500=8x+700 | | -5x-16=66 | | 7x-12=4x+3=180 | | b+2.01=5.4 | | 3x=48-6x | | 2x-16=8x | | .13x=500 | | -23=-8-x | | (2x-1)(x+3)=12x+1 | | -294=-14x | | 10^(p)=1.000 | | 11+6x=39 | | 11+6x=30 | | 16-5a+2a+1=41-a | | 18a-9=5(2a=3) | | 19.5=2.50+2x | | -28+q=42 | | -20=-25+e | | 34+5x=200 | | 11n+22=6n-47 | | 2x+10=3x+35 | | 3(10+a)=39 | | -y+2=14 | | 3(10+a)=36 | | 60+90=6x | | 1/2m+4=-2 |